Publication date: Available online 13 February 2019
Source: Gait & Posture
Author(s): Jocelyn F. Hafer, Jane A. Kent, Katherine A. Boyer
Abstract
Background
Knee osteoarthritis (OA) is a highly prevalent disease leading to mobility disability in the aged that could, in part, be initiated by age-related alterations in knee mechanics. However, if and how knee mechanics change with age remains unclear.
Research question
What are the impacts of age and physical activity (PA) on biomechanical characteristics that can affect the loading environment in the knee during gait?
Methods
Three groups (n = 20 each, 10 male and 10 female) of healthy adults were recruited: young (Y, 21-35 years), mid-life highly active (MHi, 55-70 years, runners), and mid-life less active (MLo, 55-70 years, low PA). Outcome measures included knee kinematics and kinetics and co-activation during gait, and knee extensor muscle torque and power collected at baseline and after a 30-minute treadmill trial to determine the impact of prolonged walking on knee function.
Results
At baseline, high-velocity concentric knee extensor power was lower for MLo and MHi compared with Y, and MLo displayed greater early (6.0 ± 5.8 mm) and peak during stance (11.3 ± 7.8 mm) femoral anterior displacement relative to the tibia compared with Y (0.2 ± 5.6 and 4.4 ± 6.8 mm). Also at baseline, MLo showed equal quadriceps:hamstrings activation, while Y showed greater relative hamstrings activation during midstance. The walking bout induced substantial knee extensor fatigue (decrease in maximal torque and power) in Y and MLo, while MHi were fatigue-resistant.
Significance
These results indicate that maintenance of PA in mid-life may impart small but measurable effects on knee function and biomechanics that may translate to a more stable loading environment in the knee through mid-life and thus could reduce knee OA risk long-term.
from #Audiology via ola Kala on Inoreader http://bit.ly/2BB24Z3
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου