Σάββατο 26 Μαρτίου 2016

Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures

Publication date: Available online 26 March 2016
Source:Hearing Research
Author(s): Karen A. Gordon, Parvaneh Abbasalipour, Blake C. Papsin
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to “work around” abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether “balanced” or “centered” perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. “Balanced bilateral levels” were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.



from #Audiology via ola Kala on Inoreader http://ift.tt/1XV1703
via IFTTT

Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures

Publication date: Available online 26 March 2016
Source:Hearing Research
Author(s): Karen A. Gordon, Parvaneh Abbasalipour, Blake C. Papsin
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to “work around” abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether “balanced” or “centered” perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. “Balanced bilateral levels” were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.



from #Audiology via ola Kala on Inoreader http://ift.tt/1XV1703
via IFTTT

Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures

S03785955.gif

Publication date: Available online 26 March 2016
Source:Hearing Research
Author(s): Karen A. Gordon, Parvaneh Abbasalipour, Blake C. Papsin
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to “work around” abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether “balanced” or “centered” perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. “Balanced bilateral levels” were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.



from #Audiology via ola Kala on Inoreader http://ift.tt/1XV1703
via IFTTT

Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures

S03785955.gif

Publication date: Available online 26 March 2016
Source:Hearing Research
Author(s): Karen A. Gordon, Parvaneh Abbasalipour, Blake C. Papsin
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to “work around” abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether “balanced” or “centered” perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. “Balanced bilateral levels” were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.



from #Audiology via ola Kala on Inoreader http://ift.tt/1XV1703
via IFTTT

Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures

S03785955.gif

Publication date: Available online 26 March 2016
Source:Hearing Research
Author(s): Karen A. Gordon, Parvaneh Abbasalipour, Blake C. Papsin
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to “work around” abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether “balanced” or “centered” perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. “Balanced bilateral levels” were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1XV1703
via IFTTT

A Novel Algorithm to Derive Spread of Excitation Based on Deconvolution.

Objective: The width of the spread of excitation (SOE) curve has been widely thought to represent an estimate of SOE. Therefore, correlates between psychophysical parameters, such as pitch discrimination and speech perception, and the width of SOE curves, have long been investigated. However, to date, no relationships between these objective and subjective measurements have yet been determined. In a departure from the current thinking, the authors now propose that the SOE curve, recorded with forward masking, is the equivalent of a convolution operation. As such, deconvolution would be expected to retrieve the excitation areas attributable to either masker or probe, potentially more closely revealing the actual neural SOE. This study aimed to develop a new analytical tool with which to derive SOE using this principle. Design: Intraoperative SOE curve measurements of 16 subjects, implanted with an Advanced Bionics implant, were analyzed. Evoked compound action potential (ECAP)-based SOE curves were recorded on electrodes 3 to 16, using the forward masker paradigm, with variable masker. The measured SOE curves were then compared with predicted SOE curves, built by the convolution of basic excitation density profiles (EDPs). Predicted SOE curves were fitted to the measured SOEs by iterative adjustment of the EDPs for the masker and the probe. Results: It was possible to generate a good fit between the predicted and measured SOE curves, inclusive of their asymmetry. The rectangular EDP was of least value in terms of its ability to generate a good fit; smoother SOE curves were modeled using the exponential or Gaussian EDPs. In most subjects, the EDP width (i.e., the size of the excitation area) gradually changed from wide at the apex of the electrode array, to narrow at the base. A comparison of EDP widths to SOE curve widths, as calculated in the literature, revealed that the EDPs now provide a measure of the SOE that is qualitatively distinct from that provided using conventional methods. Conclusions: This study shows that an eCAP-based SOE curve, measured with forward masking, can be treated as a convolution of EDPs for masker and probe. The poor fit achieved for the measured and modeled data using the rectangular EDP, emphasizes the requirement for a sloping excitation area to mimic actual SOE recordings. Our deconvolution method provides an explanation for the frequently observed asymmetry of SOE curves measured along the electrode array, as this is a consequence of a wider excitation area in the apical part of the cochlea, in the absence of any asymmetry in the actual EDP. In addition, broader apical EDPs underlie the higher eCAP amplitudes found for apical stimulation. Copyright (C) 2016 Wolters Kluwer Health, Inc. All rights reserved.

from #Audiology via xlomafota13 on Inoreader http://ift.tt/1MrdMad
via IFTTT

A Novel Algorithm to Derive Spread of Excitation Based on Deconvolution.

Objective: The width of the spread of excitation (SOE) curve has been widely thought to represent an estimate of SOE. Therefore, correlates between psychophysical parameters, such as pitch discrimination and speech perception, and the width of SOE curves, have long been investigated. However, to date, no relationships between these objective and subjective measurements have yet been determined. In a departure from the current thinking, the authors now propose that the SOE curve, recorded with forward masking, is the equivalent of a convolution operation. As such, deconvolution would be expected to retrieve the excitation areas attributable to either masker or probe, potentially more closely revealing the actual neural SOE. This study aimed to develop a new analytical tool with which to derive SOE using this principle. Design: Intraoperative SOE curve measurements of 16 subjects, implanted with an Advanced Bionics implant, were analyzed. Evoked compound action potential (ECAP)-based SOE curves were recorded on electrodes 3 to 16, using the forward masker paradigm, with variable masker. The measured SOE curves were then compared with predicted SOE curves, built by the convolution of basic excitation density profiles (EDPs). Predicted SOE curves were fitted to the measured SOEs by iterative adjustment of the EDPs for the masker and the probe. Results: It was possible to generate a good fit between the predicted and measured SOE curves, inclusive of their asymmetry. The rectangular EDP was of least value in terms of its ability to generate a good fit; smoother SOE curves were modeled using the exponential or Gaussian EDPs. In most subjects, the EDP width (i.e., the size of the excitation area) gradually changed from wide at the apex of the electrode array, to narrow at the base. A comparison of EDP widths to SOE curve widths, as calculated in the literature, revealed that the EDPs now provide a measure of the SOE that is qualitatively distinct from that provided using conventional methods. Conclusions: This study shows that an eCAP-based SOE curve, measured with forward masking, can be treated as a convolution of EDPs for masker and probe. The poor fit achieved for the measured and modeled data using the rectangular EDP, emphasizes the requirement for a sloping excitation area to mimic actual SOE recordings. Our deconvolution method provides an explanation for the frequently observed asymmetry of SOE curves measured along the electrode array, as this is a consequence of a wider excitation area in the apical part of the cochlea, in the absence of any asymmetry in the actual EDP. In addition, broader apical EDPs underlie the higher eCAP amplitudes found for apical stimulation. Copyright (C) 2016 Wolters Kluwer Health, Inc. All rights reserved.

from #Audiology via ola Kala on Inoreader http://ift.tt/1MrdMad
via IFTTT

A Novel Algorithm to Derive Spread of Excitation Based on Deconvolution.

Objective: The width of the spread of excitation (SOE) curve has been widely thought to represent an estimate of SOE. Therefore, correlates between psychophysical parameters, such as pitch discrimination and speech perception, and the width of SOE curves, have long been investigated. However, to date, no relationships between these objective and subjective measurements have yet been determined. In a departure from the current thinking, the authors now propose that the SOE curve, recorded with forward masking, is the equivalent of a convolution operation. As such, deconvolution would be expected to retrieve the excitation areas attributable to either masker or probe, potentially more closely revealing the actual neural SOE. This study aimed to develop a new analytical tool with which to derive SOE using this principle. Design: Intraoperative SOE curve measurements of 16 subjects, implanted with an Advanced Bionics implant, were analyzed. Evoked compound action potential (ECAP)-based SOE curves were recorded on electrodes 3 to 16, using the forward masker paradigm, with variable masker. The measured SOE curves were then compared with predicted SOE curves, built by the convolution of basic excitation density profiles (EDPs). Predicted SOE curves were fitted to the measured SOEs by iterative adjustment of the EDPs for the masker and the probe. Results: It was possible to generate a good fit between the predicted and measured SOE curves, inclusive of their asymmetry. The rectangular EDP was of least value in terms of its ability to generate a good fit; smoother SOE curves were modeled using the exponential or Gaussian EDPs. In most subjects, the EDP width (i.e., the size of the excitation area) gradually changed from wide at the apex of the electrode array, to narrow at the base. A comparison of EDP widths to SOE curve widths, as calculated in the literature, revealed that the EDPs now provide a measure of the SOE that is qualitatively distinct from that provided using conventional methods. Conclusions: This study shows that an eCAP-based SOE curve, measured with forward masking, can be treated as a convolution of EDPs for masker and probe. The poor fit achieved for the measured and modeled data using the rectangular EDP, emphasizes the requirement for a sloping excitation area to mimic actual SOE recordings. Our deconvolution method provides an explanation for the frequently observed asymmetry of SOE curves measured along the electrode array, as this is a consequence of a wider excitation area in the apical part of the cochlea, in the absence of any asymmetry in the actual EDP. In addition, broader apical EDPs underlie the higher eCAP amplitudes found for apical stimulation. Copyright (C) 2016 Wolters Kluwer Health, Inc. All rights reserved.

from #Audiology via ola Kala on Inoreader http://ift.tt/1MrdMad
via IFTTT