Τρίτη 19 Σεπτεμβρίου 2017

Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons

Publication date: Available online 18 September 2017
Source:Hearing Research
Author(s): Na He, Lingzhi Kong, Tao Lin, Shaohui Wang, Xiuping Liu, Jiyao Qi, Jun Yan
Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain.

Graphical abstract

image


from #Audiology via ola Kala on Inoreader http://ift.tt/2ynh3CG
via IFTTT

Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals

S03785955.gif

Publication date: Available online 17 September 2017
Source:Hearing Research
Author(s): Carolyn M. McClaskey
Our ability to discriminate between pitch intervals of different sizes is not only an important aspect of speech and music perception, but also a useful means of evaluating higher-level pitch perception. The current study examined how pitch-interval discrimination was affected by the size of the intervals being compared, and by musical training. Using an adaptive procedure, pitch-interval discrimination thresholds were measured for sequentially presented pure-tone intervals with standard intervals of 1 semitone (minor second), 6 semitones (the tri-tone), and 7 semitones (perfect fifth). Listeners were classified into three groups based on musical experience: non-musicians had less than 3 years of informal musical experience, amateur musicians had at least 10 years of experience but no formal music theory training, and expert musicians had at least 12 years of experience with 1 year of formal ear training, and were either currently pursuing or had earned a Bachelor's degree as either a music major or music minor. Consistent with previous studies, discrimination thresholds obtained from expert musicians were significantly lower than those from other listeners. Thresholds also significantly varied with the magnitude of the reference interval and were higher for conditions with a 6- or 7-semitone standard than a 1-semitone standard. These data show that interval-discrimination thresholds are strongly affected by the size of the standard interval.



from #Audiology via ola Kala on Inoreader http://ift.tt/2ynzhUr
via IFTTT

Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons

Publication date: Available online 18 September 2017
Source:Hearing Research
Author(s): Na He, Lingzhi Kong, Tao Lin, Shaohui Wang, Xiuping Liu, Jiyao Qi, Jun Yan
Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain.

Graphical abstract

image


from #Audiology via xlomafota13 on Inoreader http://ift.tt/2ynh3CG
via IFTTT

Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals

S03785955.gif

Publication date: Available online 17 September 2017
Source:Hearing Research
Author(s): Carolyn M. McClaskey
Our ability to discriminate between pitch intervals of different sizes is not only an important aspect of speech and music perception, but also a useful means of evaluating higher-level pitch perception. The current study examined how pitch-interval discrimination was affected by the size of the intervals being compared, and by musical training. Using an adaptive procedure, pitch-interval discrimination thresholds were measured for sequentially presented pure-tone intervals with standard intervals of 1 semitone (minor second), 6 semitones (the tri-tone), and 7 semitones (perfect fifth). Listeners were classified into three groups based on musical experience: non-musicians had less than 3 years of informal musical experience, amateur musicians had at least 10 years of experience but no formal music theory training, and expert musicians had at least 12 years of experience with 1 year of formal ear training, and were either currently pursuing or had earned a Bachelor's degree as either a music major or music minor. Consistent with previous studies, discrimination thresholds obtained from expert musicians were significantly lower than those from other listeners. Thresholds also significantly varied with the magnitude of the reference interval and were higher for conditions with a 6- or 7-semitone standard than a 1-semitone standard. These data show that interval-discrimination thresholds are strongly affected by the size of the standard interval.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/2ynzhUr
via IFTTT

Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons

Publication date: Available online 18 September 2017
Source:Hearing Research
Author(s): Na He, Lingzhi Kong, Tao Lin, Shaohui Wang, Xiuping Liu, Jiyao Qi, Jun Yan
Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain.

Graphical abstract

image


from #Audiology via ola Kala on Inoreader http://ift.tt/2ynh3CG
via IFTTT

Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals

S03785955.gif

Publication date: Available online 17 September 2017
Source:Hearing Research
Author(s): Carolyn M. McClaskey
Our ability to discriminate between pitch intervals of different sizes is not only an important aspect of speech and music perception, but also a useful means of evaluating higher-level pitch perception. The current study examined how pitch-interval discrimination was affected by the size of the intervals being compared, and by musical training. Using an adaptive procedure, pitch-interval discrimination thresholds were measured for sequentially presented pure-tone intervals with standard intervals of 1 semitone (minor second), 6 semitones (the tri-tone), and 7 semitones (perfect fifth). Listeners were classified into three groups based on musical experience: non-musicians had less than 3 years of informal musical experience, amateur musicians had at least 10 years of experience but no formal music theory training, and expert musicians had at least 12 years of experience with 1 year of formal ear training, and were either currently pursuing or had earned a Bachelor's degree as either a music major or music minor. Consistent with previous studies, discrimination thresholds obtained from expert musicians were significantly lower than those from other listeners. Thresholds also significantly varied with the magnitude of the reference interval and were higher for conditions with a 6- or 7-semitone standard than a 1-semitone standard. These data show that interval-discrimination thresholds are strongly affected by the size of the standard interval.



from #Audiology via ola Kala on Inoreader http://ift.tt/2ynzhUr
via IFTTT