Κυριακή 11 Μαρτίου 2018

A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise

Objectives: The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Design: Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Results: Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some individual differences explained by the relation between loudness growth and the rate of change from focused to broader stimulation. Conclusions: These initial results suggest that further exploration of dynamic focusing is warranted. Specifically, optimizing such strategies on an individual basis may lead to improvements in speech perception for more adult listeners and improve how CIs are tailored. Some listeners may also need a longer period of time to acclimate to a new program. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and text of this article on the journal’s Web site (www.ear-hearing.com). ACKNOWLEDGMENTS: The authors thank the cochlear implant subjects who patiently participated in this study. The authors also thank Lindsay DeVries and Gabrielle O’Brien for assistance with statistical analyses. This work was funded by the National Institutes of Health, National Institute of Deafness and Other Communication Disorders R01DC012142 (J.G.A./J.A.B.) and R01DC012262 (A.J.O.). The authors declare no conflicts of interest. Address for correspondence: Julie G. Arenberg, Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, WA 98105, USA. E-mail: jbierer@uw.edu Received March 24, 2017; accepted January 26, 2018. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.

from #Audiology via xlomafota13 on Inoreader http://ift.tt/2FrSkEh
via IFTTT

A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise

Objectives: The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Design: Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Results: Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some individual differences explained by the relation between loudness growth and the rate of change from focused to broader stimulation. Conclusions: These initial results suggest that further exploration of dynamic focusing is warranted. Specifically, optimizing such strategies on an individual basis may lead to improvements in speech perception for more adult listeners and improve how CIs are tailored. Some listeners may also need a longer period of time to acclimate to a new program. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and text of this article on the journal’s Web site (www.ear-hearing.com). ACKNOWLEDGMENTS: The authors thank the cochlear implant subjects who patiently participated in this study. The authors also thank Lindsay DeVries and Gabrielle O’Brien for assistance with statistical analyses. This work was funded by the National Institutes of Health, National Institute of Deafness and Other Communication Disorders R01DC012142 (J.G.A./J.A.B.) and R01DC012262 (A.J.O.). The authors declare no conflicts of interest. Address for correspondence: Julie G. Arenberg, Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, WA 98105, USA. E-mail: jbierer@uw.edu Received March 24, 2017; accepted January 26, 2018. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.

from #Audiology via ola Kala on Inoreader http://ift.tt/2FrSkEh
via IFTTT

A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise

Objectives: The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Design: Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Results: Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some individual differences explained by the relation between loudness growth and the rate of change from focused to broader stimulation. Conclusions: These initial results suggest that further exploration of dynamic focusing is warranted. Specifically, optimizing such strategies on an individual basis may lead to improvements in speech perception for more adult listeners and improve how CIs are tailored. Some listeners may also need a longer period of time to acclimate to a new program. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and text of this article on the journal’s Web site (www.ear-hearing.com). ACKNOWLEDGMENTS: The authors thank the cochlear implant subjects who patiently participated in this study. The authors also thank Lindsay DeVries and Gabrielle O’Brien for assistance with statistical analyses. This work was funded by the National Institutes of Health, National Institute of Deafness and Other Communication Disorders R01DC012142 (J.G.A./J.A.B.) and R01DC012262 (A.J.O.). The authors declare no conflicts of interest. Address for correspondence: Julie G. Arenberg, Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, WA 98105, USA. E-mail: jbierer@uw.edu Received March 24, 2017; accepted January 26, 2018. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.

from #Audiology via ola Kala on Inoreader http://ift.tt/2FrSkEh
via IFTTT

Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications

S03785955.gif

Publication date: Available online 11 March 2018
Source:Hearing Research
Author(s): Alec N. Salt, Stefan K. Plontke
Local drug delivery to the ear has gained wide clinical acceptance, with the choice of drug and application protocol in humans largely empirically-derived. Here, we review the pharmacokinetics underlying local therapy of the ear using the drugs commonly used in clinical practice as examples. Based on molecular properties and perilymph measurements interpreted through computer simulations we now better understand the principles underlying entry and distribution of these and other drugs in the ear. From our analysis, we have determined that dexamethasone-phosphate, a pro-drug widely-used clinically, has molecular and pharmacokinetic properties that make it ill-suited for use as a local therapy for hearing disorders. This polar form of dexamethasone, used as a more soluble agent in intravenous preparations, passes less readily through lipid membranes, such as those of the epithelia restricting entry at the round window membrane and stapes. Once within the inner ear, dexamethasone-phosphate is cleaved to the active form, dexamethasone, which is less polar, passes more readily through lipid membranes of the blood-perilymph barrier and is rapidly eliminated from perilymph without distributing to apical cochlear regions. Dexamethasone-phosphate therefore provides only a brief exposure of the basal regions of the cochlea to active drug. Other steroids, such as triamcinolone-acetonide, exhibit pharmacokinetic properties more appropriate to the ear and merit more detailed consideration.



from #Audiology via ola Kala on Inoreader http://ift.tt/2FFZFPR
via IFTTT

Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications

S03785955.gif

Publication date: Available online 11 March 2018
Source:Hearing Research
Author(s): Alec N. Salt, Stefan K. Plontke
Local drug delivery to the ear has gained wide clinical acceptance, with the choice of drug and application protocol in humans largely empirically-derived. Here, we review the pharmacokinetics underlying local therapy of the ear using the drugs commonly used in clinical practice as examples. Based on molecular properties and perilymph measurements interpreted through computer simulations we now better understand the principles underlying entry and distribution of these and other drugs in the ear. From our analysis, we have determined that dexamethasone-phosphate, a pro-drug widely-used clinically, has molecular and pharmacokinetic properties that make it ill-suited for use as a local therapy for hearing disorders. This polar form of dexamethasone, used as a more soluble agent in intravenous preparations, passes less readily through lipid membranes, such as those of the epithelia restricting entry at the round window membrane and stapes. Once within the inner ear, dexamethasone-phosphate is cleaved to the active form, dexamethasone, which is less polar, passes more readily through lipid membranes of the blood-perilymph barrier and is rapidly eliminated from perilymph without distributing to apical cochlear regions. Dexamethasone-phosphate therefore provides only a brief exposure of the basal regions of the cochlea to active drug. Other steroids, such as triamcinolone-acetonide, exhibit pharmacokinetic properties more appropriate to the ear and merit more detailed consideration.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/2FFZFPR
via IFTTT

Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications

S03785955.gif

Publication date: Available online 11 March 2018
Source:Hearing Research
Author(s): Alec N. Salt, Stefan K. Plontke
Local drug delivery to the ear has gained wide clinical acceptance, with the choice of drug and application protocol in humans largely empirically-derived. Here, we review the pharmacokinetics underlying local therapy of the ear using the drugs commonly used in clinical practice as examples. Based on molecular properties and perilymph measurements interpreted through computer simulations we now better understand the principles underlying entry and distribution of these and other drugs in the ear. From our analysis, we have determined that dexamethasone-phosphate, a pro-drug widely-used clinically, has molecular and pharmacokinetic properties that make it ill-suited for use as a local therapy for hearing disorders. This polar form of dexamethasone, used as a more soluble agent in intravenous preparations, passes less readily through lipid membranes, such as those of the epithelia restricting entry at the round window membrane and stapes. Once within the inner ear, dexamethasone-phosphate is cleaved to the active form, dexamethasone, which is less polar, passes more readily through lipid membranes of the blood-perilymph barrier and is rapidly eliminated from perilymph without distributing to apical cochlear regions. Dexamethasone-phosphate therefore provides only a brief exposure of the basal regions of the cochlea to active drug. Other steroids, such as triamcinolone-acetonide, exhibit pharmacokinetic properties more appropriate to the ear and merit more detailed consideration.



from #Audiology via ola Kala on Inoreader http://ift.tt/2FFZFPR
via IFTTT

Does Kinesiology tape counter exercise-related impairments of balance in the elderly?

S09666362.gif

Publication date: Available online 10 March 2018
Source:Gait & Posture
Author(s): Simona Hosp, Robert Csapo, Dieter Heinrich, Michael Hasler, Werner Nachbauer
BackgroundMaintaining balance is an essential requirement for the performance of daily tasks and sporting activities, particularly in older adults to prevent falls and associated injuries. Kinesiology tape has gained great popularity in sports and is frequently used as a tool for performance enhancement. However, there is little research investigating its influence on balance.Research questionThe purpose of this study was to evaluate the effect of Kinesiology tape on dynamic balance, postural stability and knee proprioception after physical activity in healthy, older adults.MethodsTwelve physically active, healthy men aged 63-77 years performed the test on two separate days, with and without Kinesiology tape at the knee joint (prospective intervention with cross-over design). Dynamic balance during an obstacle-crossing task, postural stability in a single-leg stance test, and knee joint position sense as a measure of proprioception were examined before and after 30 minutes of downhill walking on a treadmill. The influences of taping condition and physical activity on all parameters were statistically tested using factorial ANOVAs.ResultsFactorial ANOVA revealed significant time × taping condition interaction effects on all performance parameters (p < 0.05), indicating that the exercise-related changes in dynamic balance, postural stability and knee proprioception differed between the two taping conditions. The deterioration of performance was always greater when no tape was used.SignificanceThis study demonstrated that physical exercise significantly deteriorated dynamic balance, postural stability and knee proprioception in older men. These effects can be attenuated through the usage of Kinesiology tape. By preventing exercise-related impairments of balance, Kinesiology tape might help reduce the risk of sports-associated falls and associated injuries.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/2HqRMuV
via IFTTT

Does Kinesiology tape counter exercise-related impairments of balance in the elderly?

S09666362.gif

Publication date: Available online 10 March 2018
Source:Gait & Posture
Author(s): Simona Hosp, Robert Csapo, Dieter Heinrich, Michael Hasler, Werner Nachbauer
BackgroundMaintaining balance is an essential requirement for the performance of daily tasks and sporting activities, particularly in older adults to prevent falls and associated injuries. Kinesiology tape has gained great popularity in sports and is frequently used as a tool for performance enhancement. However, there is little research investigating its influence on balance.Research questionThe purpose of this study was to evaluate the effect of Kinesiology tape on dynamic balance, postural stability and knee proprioception after physical activity in healthy, older adults.MethodsTwelve physically active, healthy men aged 63-77 years performed the test on two separate days, with and without Kinesiology tape at the knee joint (prospective intervention with cross-over design). Dynamic balance during an obstacle-crossing task, postural stability in a single-leg stance test, and knee joint position sense as a measure of proprioception were examined before and after 30 minutes of downhill walking on a treadmill. The influences of taping condition and physical activity on all parameters were statistically tested using factorial ANOVAs.ResultsFactorial ANOVA revealed significant time × taping condition interaction effects on all performance parameters (p < 0.05), indicating that the exercise-related changes in dynamic balance, postural stability and knee proprioception differed between the two taping conditions. The deterioration of performance was always greater when no tape was used.SignificanceThis study demonstrated that physical exercise significantly deteriorated dynamic balance, postural stability and knee proprioception in older men. These effects can be attenuated through the usage of Kinesiology tape. By preventing exercise-related impairments of balance, Kinesiology tape might help reduce the risk of sports-associated falls and associated injuries.



from #Audiology via ola Kala on Inoreader http://ift.tt/2HqRMuV
via IFTTT

Does Kinesiology tape counter exercise-related impairments of balance in the elderly?

S09666362.gif

Publication date: Available online 10 March 2018
Source:Gait & Posture
Author(s): Simona Hosp, Robert Csapo, Dieter Heinrich, Michael Hasler, Werner Nachbauer
BackgroundMaintaining balance is an essential requirement for the performance of daily tasks and sporting activities, particularly in older adults to prevent falls and associated injuries. Kinesiology tape has gained great popularity in sports and is frequently used as a tool for performance enhancement. However, there is little research investigating its influence on balance.Research questionThe purpose of this study was to evaluate the effect of Kinesiology tape on dynamic balance, postural stability and knee proprioception after physical activity in healthy, older adults.MethodsTwelve physically active, healthy men aged 63-77 years performed the test on two separate days, with and without Kinesiology tape at the knee joint (prospective intervention with cross-over design). Dynamic balance during an obstacle-crossing task, postural stability in a single-leg stance test, and knee joint position sense as a measure of proprioception were examined before and after 30 minutes of downhill walking on a treadmill. The influences of taping condition and physical activity on all parameters were statistically tested using factorial ANOVAs.ResultsFactorial ANOVA revealed significant time × taping condition interaction effects on all performance parameters (p < 0.05), indicating that the exercise-related changes in dynamic balance, postural stability and knee proprioception differed between the two taping conditions. The deterioration of performance was always greater when no tape was used.SignificanceThis study demonstrated that physical exercise significantly deteriorated dynamic balance, postural stability and knee proprioception in older men. These effects can be attenuated through the usage of Kinesiology tape. By preventing exercise-related impairments of balance, Kinesiology tape might help reduce the risk of sports-associated falls and associated injuries.



from #Audiology via ola Kala on Inoreader http://ift.tt/2HqRMuV
via IFTTT