Παρασκευή 13 Μαΐου 2016

Muscle co-contraction during gait in individuals with articular cartilage defects in the knee

Publication date: July 2016
Source:Gait & Posture, Volume 48
Author(s): Louise M. Thoma, Michael P. McNally, Ajit M. Chaudhari, David C. Flanigan, Thomas M. Best, Robert A. Siston, Laura C. Schmitt
Increased muscle co-contraction during gait is common in individuals with knee pathology, and worrisome as it is known to amplify tibiofemoral compressive forces. While knees with articular cartilage defects (ACD) are more vulnerable to compressive forces, muscle co-contraction has never been reported in this population. The purpose of this study was to evaluate the extent to which individuals with ACDs in the knee demonstrate elevated quadriceps to hamstrings muscle co-contraction on the involved limb during gait compared to the uninvolved limb and to healthy controls. We also explored the impact of participant characteristics and knee impairments on co-contraction. Twenty-nine individuals with full-thickness knee ACDs (ACD group) and 19 healthy adults (control group) participated in this study. Participants performed five gait trials at self-selected speed, during which activity of the quadriceps and hamstrings muscles were collected with surface electromyography. Three-dimensional motion capture was used to define phases of gait. Quadriceps strength and self-reported outcomes were also assessed in the same session. There were no differences in quadriceps: hamstrings co-contraction between the ACD and control groups, or between the involved and uninvolved limb for the ACD group. For both ACD and control groups, co-contraction was highest in early stance and lowest in late stance. Quadriceps strength was consistently the strongest predictor of muscle co-contraction in both the ACD and the control groups, with individuals with lower strength demonstrating greater co-contraction. Further study is needed to understand the effect of increased muscle co-contraction on joint compressive forces in the presence of varied quadriceps strength.



from #Audiology via ola Kala on Inoreader http://ift.tt/27lzDXR
via IFTTT

Muscle co-contraction during gait in individuals with articular cartilage defects in the knee

Publication date: July 2016
Source:Gait & Posture, Volume 48
Author(s): Louise M. Thoma, Michael P. McNally, Ajit M. Chaudhari, David C. Flanigan, Thomas M. Best, Robert A. Siston, Laura C. Schmitt
Increased muscle co-contraction during gait is common in individuals with knee pathology, and worrisome as it is known to amplify tibiofemoral compressive forces. While knees with articular cartilage defects (ACD) are more vulnerable to compressive forces, muscle co-contraction has never been reported in this population. The purpose of this study was to evaluate the extent to which individuals with ACDs in the knee demonstrate elevated quadriceps to hamstrings muscle co-contraction on the involved limb during gait compared to the uninvolved limb and to healthy controls. We also explored the impact of participant characteristics and knee impairments on co-contraction. Twenty-nine individuals with full-thickness knee ACDs (ACD group) and 19 healthy adults (control group) participated in this study. Participants performed five gait trials at self-selected speed, during which activity of the quadriceps and hamstrings muscles were collected with surface electromyography. Three-dimensional motion capture was used to define phases of gait. Quadriceps strength and self-reported outcomes were also assessed in the same session. There were no differences in quadriceps: hamstrings co-contraction between the ACD and control groups, or between the involved and uninvolved limb for the ACD group. For both ACD and control groups, co-contraction was highest in early stance and lowest in late stance. Quadriceps strength was consistently the strongest predictor of muscle co-contraction in both the ACD and the control groups, with individuals with lower strength demonstrating greater co-contraction. Further study is needed to understand the effect of increased muscle co-contraction on joint compressive forces in the presence of varied quadriceps strength.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/27lzDXR
via IFTTT

Muscle co-contraction during gait in individuals with articular cartilage defects in the knee

Publication date: July 2016
Source:Gait & Posture, Volume 48
Author(s): Louise M. Thoma, Michael P. McNally, Ajit M. Chaudhari, David C. Flanigan, Thomas M. Best, Robert A. Siston, Laura C. Schmitt
Increased muscle co-contraction during gait is common in individuals with knee pathology, and worrisome as it is known to amplify tibiofemoral compressive forces. While knees with articular cartilage defects (ACD) are more vulnerable to compressive forces, muscle co-contraction has never been reported in this population. The purpose of this study was to evaluate the extent to which individuals with ACDs in the knee demonstrate elevated quadriceps to hamstrings muscle co-contraction on the involved limb during gait compared to the uninvolved limb and to healthy controls. We also explored the impact of participant characteristics and knee impairments on co-contraction. Twenty-nine individuals with full-thickness knee ACDs (ACD group) and 19 healthy adults (control group) participated in this study. Participants performed five gait trials at self-selected speed, during which activity of the quadriceps and hamstrings muscles were collected with surface electromyography. Three-dimensional motion capture was used to define phases of gait. Quadriceps strength and self-reported outcomes were also assessed in the same session. There were no differences in quadriceps: hamstrings co-contraction between the ACD and control groups, or between the involved and uninvolved limb for the ACD group. For both ACD and control groups, co-contraction was highest in early stance and lowest in late stance. Quadriceps strength was consistently the strongest predictor of muscle co-contraction in both the ACD and the control groups, with individuals with lower strength demonstrating greater co-contraction. Further study is needed to understand the effect of increased muscle co-contraction on joint compressive forces in the presence of varied quadriceps strength.



from #Audiology via ola Kala on Inoreader http://ift.tt/27lzDXR
via IFTTT

On Older Listeners' Ability to Perceive Dynamic Pitch

Purpose
Natural speech comes with variation in pitch, which serves as an important cue for speech recognition. The present study investigated older listeners' dynamic pitch perception with a focus on interindividual variability. In particular, we asked whether some of the older listeners' inability to perceive dynamic pitch stems from the higher susceptibility to the interference from formant changes.
Method
A total of 22 older listeners and 21 younger controls with at least near-typical hearing were tested on dynamic pitch identification and discrimination tasks using synthetic monophthong and diphthong vowels.
Results
The older listeners' ability to detect changes in pitch varied substantially, even when musical and linguistic experiences were controlled. The influence of formant patterns on dynamic pitch perception was evident in both groups of listeners. Overall, strong pitch contours (i.e., more dynamic) were perceived better than weak pitch contours (i.e., more monotonic), particularly with rising pitch patterns.
Conclusions
The findings are in accordance with the literature demonstrating some older individuals' difficulty perceiving dynamic pitch cues in speech. Moreover, they suggest that this problem may be prominent when the dynamic pitch is carried by natural speech and when the pitch contour is not strong.

from #Audiology via xlomafota13 on Inoreader http://ift.tt/1Tf3CJJ
via IFTTT

On Older Listeners' Ability to Perceive Dynamic Pitch

Purpose
Natural speech comes with variation in pitch, which serves as an important cue for speech recognition. The present study investigated older listeners' dynamic pitch perception with a focus on interindividual variability. In particular, we asked whether some of the older listeners' inability to perceive dynamic pitch stems from the higher susceptibility to the interference from formant changes.
Method
A total of 22 older listeners and 21 younger controls with at least near-typical hearing were tested on dynamic pitch identification and discrimination tasks using synthetic monophthong and diphthong vowels.
Results
The older listeners' ability to detect changes in pitch varied substantially, even when musical and linguistic experiences were controlled. The influence of formant patterns on dynamic pitch perception was evident in both groups of listeners. Overall, strong pitch contours (i.e., more dynamic) were perceived better than weak pitch contours (i.e., more monotonic), particularly with rising pitch patterns.
Conclusions
The findings are in accordance with the literature demonstrating some older individuals' difficulty perceiving dynamic pitch cues in speech. Moreover, they suggest that this problem may be prominent when the dynamic pitch is carried by natural speech and when the pitch contour is not strong.

from #Audiology via ola Kala on Inoreader http://ift.tt/1Tf3CJJ
via IFTTT

On Older Listeners' Ability to Perceive Dynamic Pitch

Purpose
Natural speech comes with variation in pitch, which serves as an important cue for speech recognition. The present study investigated older listeners' dynamic pitch perception with a focus on interindividual variability. In particular, we asked whether some of the older listeners' inability to perceive dynamic pitch stems from the higher susceptibility to the interference from formant changes.
Method
A total of 22 older listeners and 21 younger controls with at least near-typical hearing were tested on dynamic pitch identification and discrimination tasks using synthetic monophthong and diphthong vowels.
Results
The older listeners' ability to detect changes in pitch varied substantially, even when musical and linguistic experiences were controlled. The influence of formant patterns on dynamic pitch perception was evident in both groups of listeners. Overall, strong pitch contours (i.e., more dynamic) were perceived better than weak pitch contours (i.e., more monotonic), particularly with rising pitch patterns.
Conclusions
The findings are in accordance with the literature demonstrating some older individuals' difficulty perceiving dynamic pitch cues in speech. Moreover, they suggest that this problem may be prominent when the dynamic pitch is carried by natural speech and when the pitch contour is not strong.

from #Audiology via ola Kala on Inoreader http://ift.tt/1Tf3CJJ
via IFTTT

On the performance and flow characteristics of jet pumps with multiple orifices

cm_sbs_024_plain.png

The design of compact thermoacoustic devices requires compact jet pump geometries, which can be realized by employing jet pumps with multiple orifices. The oscillatory flow through the orifice(s) of a jet pump generates asymmetric hydrodynamic end effects, which result in a time-averaged pressure drop that can counteract Gedeon streaming in traveling wave thermoacoustic devices. In this study, the performance of jet pumps having 1–16 orifices is characterized experimentally in terms of the time-averaged pressure drop and acoustic power dissipation. Upon increasing the number of orifices, a significant decay in the jet pump performance is observed. Further analysis shows a relation between this performance decay and the diameter of the individual holes. Possible causes of this phenomenon are discussed. Flow visualization is used to study the differences in vortex ring interaction from adjacent jet pump orifices. The mutual orifice spacing is varied and the corresponding jet pump performance is measured. The orifice spacing is shown to have less effect on the jet pump performance compared to increasing the number of orifices.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1ZNgLLK
via IFTTT

Acoustic firearm discharge detection and classification in an enclosed environment

cm_sbs_024_plain.png

Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1X7opl3
via IFTTT

A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception

A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100–107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognitionexperiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892–2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with—and hence to predict—empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1ZNgKrf
via IFTTT

Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska

cm_sbs_024_plain.png

As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1X7ooh1
via IFTTT

Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds

cm_sbs_024_plain.png

The evolution of reduced-order vocal fold models into clinically useful tools for subject-specific diagnosis and treatment hinges upon successfully and accurately representing an individual patient in the modeling framework. This, in turn, requires inference of model parameters from clinical measurements in order to tune a model to the given individual. Bayesian analysis is a powerful tool for estimating model parameter probabilities based upon a set of observed data. In this work, a Bayesian particle filter sampling technique capable of estimating time-varying model parameters, as occur in complex vocal gestures, is introduced. The technique is compared with time-invariant Bayesian estimation and least squares methods for determining both stationary and non-stationary parameters. The current technique accurately estimates the time-varying unknown model parameter and maintains tight credibility bounds. The credibility bounds are particularly relevant from a clinical perspective, as they provide insight into the confidence a clinician should have in the model predictions.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1ZNgLva
via IFTTT