from #Audiology via xlomafota13 on Inoreader http://ift.tt/1oOcWJO
via IFTTT
OtoRhinoLaryngology by Sfakianakis G.Alexandros Sfakianakis G.Alexandros,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,tel : 00302841026182,00306932607174
by Marie Eliasen, Svend Kreiner, Jeanette F. Ebstrup, Chalotte H. Poulsen, Cathrine J. Lau, Sine Skovbjerg, Per K. Fink, Torben Jørgensen
A high number of somatic symptoms have been associated with poor health status and increased health care use. Previous studies focused on number of symptoms without considering the specific symptoms. The aim of the study was to investigate 1) the prevalence of 19 somatic symptoms, 2) the associations between the symptoms, and 3) the associations between the somatic symptoms, self-perceived health and limitations due to physical health accounting for the co-occurrence of symptoms. Information on 19 somatic symptoms, self-perceived health and limitations due to physical health was achieved from a population-based questionnaire survey of 36,163 randomly selected adults in the Capital Region of Denmark in 2006/07. Chain graph models were used to transparently identify and describe the associations between symptoms, self-perceived health and limitations due to physical health. In total, 94.9% of the respondents were bothered by one or more of the 19 somatic symptoms. The symptoms were associated in a complex structure. Still, recognisable patterns were identified within organ systems/body parts. When accounting for symptom co-occurrence; dizziness, pain in legs, respiratory distress and tiredness were all strongly directly associated with both of the outcomes (γ>0.30). Chest pain was strongly associated with self-perceived health, and other musculoskeletal symptoms and urinary retention were strongly associated with limitations due to physical health. Other symptoms were either moderate or not statistically associated with the health status outcomes. Opposite, almost all the symptoms were strongly associated with the two outcomes when not accounting for symptom co-occurrence. In conclusion, we found that somatic symptoms were frequent and associated in a complex structure. The associations between symptoms and health status measures differed between the symptoms and depended on the co-occurrence of symptoms. This indicates an importance of considering both the specific symptoms and symptom co-occurrence in further symptom research instead of merely counting symptoms.Increases in the acoustic startle response (ASR) of animals have been reported following experimental manipulations to induce tinnitus, an auditory disorder defined by phantom perception of sound. The increases in ASR have been proposed to signify the development of hyperacusis, a clinical condition defined by intolerance of normally tolerable sound levels. To test this proposal, the present study compared ASR amplitude to measures of sound-level tolerance (SLT) in humans, the only species in which SLT can be directly assessed. Participants had clinically normal/near-normal hearing thresholds, were free of psychotropic medications, and comprised people with tinnitus and without. ASR was measured as eyeblink-related electromyographic activity in response to a noise pulse presented at a range of levels and in two background conditions (noise and quiet). SLT was measured as loudness discomfort level (LDL), the lowest level of sound deemed uncomfortable, and via a questionnaire on the loudness of sounds in everyday life. Regardless of tinnitus status, ASR amplitude at a given stimulus level increased with decreasing LDL, but showed no relationship to SLT self-reported via the questionnaire. These relationships (or lack thereof) could not be attributed to hearing threshold, age, anxiety, or depression. The results imply that increases in ASR in the animal work signify decreases in LDL specifically and may not correspond to the development of hyperacusis as would be self-reported by a clinic patient.
Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.
A sound field recording and reproduction method using circular arrays of microphones and loudspeakers with a spherical baffle is proposed. The spherical baffle is an acoustically rigid object on which the microphone array is mounted. The driving signals of the loudspeakers must be obtained from the signals received by the microphones. A transform filter for this signal conversion is analytically derived, which is referred to as the wave field reconstruction filter. The proposed method using a spherical baffle is compared with methods using an array of directional microphones and a microphone array mounted on a cylindrical baffle. Numerical simulations indicated that the proposed method is advantageous for sound field recording and reproduction compared with the other two methods. The results of measurement experiments in a real environment are also demonstrated.
Male concave-eared torrent frogs (Odorrana tormota) can emit at least eight distinct call-types. However, the mechanisms by which they are produced are not fully understood. Anatomical analysis revealed that the vocal sacs of male O. tormota comprise two physically distinct compartments (pars lateralis and pars ventralis), residing on two sides of the vocal slits. The goal of the present study was to test the hypothesis that the two compartments play a role in the production of the diverse call-types. For this, audio and video recordings of male vocalizations were made, and sounds were analyzed afterwards. Results showed that the vocal sac inflation pattern was heterogeneous, and the call duration was a major factor determining the differential inflation patterns. Short call-types (duration 5000 Hz involved inflation of pars lateralis only, whereas those with an F0 of 200 ms), e.g., shallow frequency modulation calls, staccato calls, and long calls, involved inflation of both compartments of the vocal sacs. These results give support to the working hypothesis.
Matched-field acoustic source localization is a challenging task when environmental properties of the oceanic waveguide are not precisely known. Errors in the assumed environment (mismatch) can cause severe degradations in localization performance. This paper develops a Bayesian approach to improve robustness to environmental mismatch by considering the waveguideGreen's function to be an uncertain random vector whose probability density accounts for environmental uncertainty. The posterior probability density is integrated over the Green's functionprobability density to obtain a joint marginal probability distribution for source range and depth, accounting for environmental uncertainty and quantifying localization uncertainty. Because brute-force integration in high dimensions can be costly, an efficient method is developed in which the multi-dimensional Green's function integration is approximated by one-dimensional integration over a suitably defined correlation measure. An approach to approximate the Green's function covariance matrix, which represents the environmental mismatch, is developed based on modal analysis. Examples are presented to illustrate the method and Monte-Carlo simulations are carried out to evaluate its performance relative to other methods. The proposed method gives efficient, reliable source localization and uncertainties with improved robustness toward environmental mismatch.
Objective detection of auditory steady-state evoked potentials based on mutual information.
Int J Audiol. 2016 Feb 29;:1-7
Authors: Bidelman GM, Bhagat SP
Abstract
OBJECTIVE: Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-state response (ASSR), a sustained potential used in objective audiometry.
DESIGN: MI was computed between spectrograms of ASSRs and their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC).
STUDY SAMPLE: Using an empirically derived threshold (⊖MI=1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in human participants (n=11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition).
RESULTS: MI achieved high overall accuracy (>90%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of trials (i.e., ∼400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance.
CONCLUSIONS: MI provides an alternative, more flexible metric for efficient and automated ASSR detection.
PMID: 26924597 [PubMed - as supplied by publisher]
Book Review.
Int J Audiol. 2016 Feb 29;:1
Authors: Bramlette SB
PMID: 26924490 [PubMed - as supplied by publisher]
Objective detection of auditory steady-state evoked potentials based on mutual information.
Int J Audiol. 2016 Feb 29;:1-7
Authors: Bidelman GM, Bhagat SP
Abstract
OBJECTIVE: Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-state response (ASSR), a sustained potential used in objective audiometry.
DESIGN: MI was computed between spectrograms of ASSRs and their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC).
STUDY SAMPLE: Using an empirically derived threshold (⊖MI=1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in human participants (n=11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition).
RESULTS: MI achieved high overall accuracy (>90%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of trials (i.e., ∼400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance.
CONCLUSIONS: MI provides an alternative, more flexible metric for efficient and automated ASSR detection.
PMID: 26924597 [PubMed - as supplied by publisher]
Book Review.
Int J Audiol. 2016 Feb 29;:1
Authors: Bramlette SB
PMID: 26924490 [PubMed - as supplied by publisher]
Objective detection of auditory steady-state evoked potentials based on mutual information.
Int J Audiol. 2016 Feb 29;:1-7
Authors: Bidelman GM, Bhagat SP
Abstract
OBJECTIVE: Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-state response (ASSR), a sustained potential used in objective audiometry.
DESIGN: MI was computed between spectrograms of ASSRs and their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC).
STUDY SAMPLE: Using an empirically derived threshold (⊖MI=1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in human participants (n=11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition).
RESULTS: MI achieved high overall accuracy (>90%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of trials (i.e., ∼400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance.
CONCLUSIONS: MI provides an alternative, more flexible metric for efficient and automated ASSR detection.
PMID: 26924597 [PubMed - as supplied by publisher]
Book Review.
Int J Audiol. 2016 Feb 29;:1
Authors: Bramlette SB
PMID: 26924490 [PubMed - as supplied by publisher]
Objective detection of auditory steady-state evoked potentials based on mutual information.
Int J Audiol. 2016 Feb 29;:1-7
Authors: Bidelman GM, Bhagat SP
Abstract
OBJECTIVE: Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-state response (ASSR), a sustained potential used in objective audiometry.
DESIGN: MI was computed between spectrograms of ASSRs and their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC).
STUDY SAMPLE: Using an empirically derived threshold (⊖MI=1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in human participants (n=11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition).
RESULTS: MI achieved high overall accuracy (>90%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of trials (i.e., ∼400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance.
CONCLUSIONS: MI provides an alternative, more flexible metric for efficient and automated ASSR detection.
PMID: 26924597 [PubMed - as supplied by publisher]
Book Review.
Int J Audiol. 2016 Feb 29;:1
Authors: Bramlette SB
PMID: 26924490 [PubMed - as supplied by publisher]