Τρίτη 27 Δεκεμβρίου 2022

The HBV web: An insight into molecular interactomes between the Hepatitis B virus and its host en route to hepatocellular carcinoma.

alexandrossfakianakis shared this article with you from Inoreader

ABSTRACT

Hepatitis B virus (HBV) is a major aetiology associated with the development and progression of hepatocellular carcinoma (HCC), the most common primary liver malignancy. Over the past few decades, direct and indirect mechanisms have been identified in the pathogenesis of HBV-associated HCC which include altered signaling pathways, genome integration, mutation-induced genomic instability, chromosomal deletions and rearrangements. Intertwining of the HBV counterparts with the host cellular factors, though well established, needs to be systemized to understand the dynamics of host-HBV crosstalk and its consequences on HCC progression. Existence of a vast array of protein-protein and protein-nucleic acid interaction databases has led to the uncoiling of the compendia of genes/gene products associated with these interactions. This review covers the existing knowledge about the HBV-host interplay and brings it down under one canopy emphasizing on the HBV-host interactomics; and thereby highlights new strategies for therapeutic advancements against HBV-induced HCC.

This article is protected by copyright. All rights reserved.

View on Web

Infectivity of pseudotyped SARS‐CoV‐2 variants of concern in different human cell types and inhibitory effects of recombinant spike protein and entry‐related cellular factors

alexandrossfakianakis shared this article with you from Inoreader

Abstract

Since the report of the first COVID-19 case in 2019, SARS-CoV-2 variants of concern (VOCs) have continued to emerge, manifesting diverse infectivity, evasion of host immunity and pathology. While ACE2 is the predominant receptor of SARS-CoV-2, TMPRSS2, Kim-1, NRP-1, CD147, furin, CD209L and CD26 have also been implicated as viral entry-related cofactors. To understand the variations in infectivity and pathogenesis of VOCs, we conducted infection analysis in human cells from different organ systems using pseudoviruses of VOCs including Alpha, Beta, Gamma and Delta. Recombinant spike S1, RBD, ACE2, Kim-1 and NRP-1 proteins were tested for their ability to block infection to dissect their roles in SARS-CoV-2 entry into cells. Compared with wild type SARS-CoV-2 (WT), numerous VOCs had significant increases of infectivity across a wide spectrum of cell types. Recombinant ACE2 protein more effectively inhibited the infection of VOCs including Delta and Omicron (BA .1 and BA.2) than that of WT. Interestingly, recombinant S1, RBD, Kim-1 and NRP-1 proteins inhibited the infection of all pseudoviruses in a manner dependent on the levels of ACE2 expression in different cell types. These results provide insights into the diverse infectivity of SARS-CoV-2 VOCs, which might be helpful for managing the emergence of new VOCs.

This article is protected by copyright. All rights reserved.

View on Web