from #Audiology via xlomafota13 on Inoreader http://article/doi/10.1044/2017_LSHSS-17-0031/2663823/Exemplar-Variability-Facilitates-Retention-of-Word
via IFTTT
OtoRhinoLaryngology by Sfakianakis G.Alexandros Sfakianakis G.Alexandros,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,tel : 00302841026182,00306932607174
Detection of medial olivocochlear-induced (MOC) changes to transient-evoked otoacoustic emissions (TEOAE) requires high signal-to-noise ratios (SNR). TEOAEs associated with synchronized spontaneous (SS) OAEs exhibit higher SNRs than TEOAEs in the absence of SSOAEs, potentially making the former well suited for MOC assays. Although SSOAEs may complicate interpretation of MOC-induced changes to TEOAE latency, recent work suggests SSOAEs are not a problem in non-latency-dependent MOC assays. The current work examined the potential benefit of SSOAEs in TEOAE-based assays of the MOC efferents. It was hypothesized that the higher SNR afforded by SSOAEs would permit detection of smaller changes to the TEOAE upon activation of the MOC reflex. TEOAEs were measured in 24 female subjects in the presence and absence of contralateral broadband noise. Frequency bands with and without SSOAEs were identified for each subject. The prevalence of TEOAEs and statistically significant MOC effects were highest in frequency bands that also contained SSOAEs. The median TEOAE SNR in frequency bands with SSOAEs was approximately 8 dB higher than the SNR in frequency bands lacking SSOAEs. After normalizing by TEOAE amplitude, MOC-induced changes to the TEOAE were similar between frequency bands with and without SSOAEs. Smaller MOC effects were detectable across a subset of the frequency bands with SSOAEs, presumably due to a higher TEOAE SNR. These findings demonstrate that SSOAEs are advantageous in assays of the MOC reflex.
In this study, we present a systematic characterization of hair cell loss and regeneration in the chicken utricle in vivo. A single unilateral surgical delivery of streptomycin caused robust decline of hair cell numbers in striolar as well as extrastriolar regions, which in the striola was detected very early, 6 h post-insult. During the initial 12 h of damage response, we observed global repression of DNA replication, in contrast to the natural, mitotic hair cell production in undamaged control utricles. Regeneration of hair cells in striolar and extrastriolar regions occurred via high rates of asymmetric supporting cell divisions, accompanied by delayed replenishment by symmetric division. While asymmetric division of supporting cells is the main regenerative response to aminoglycoside damage, the detection of symmetric divisions supports the concept of direct transdifferentiation where supporting cells need to be replenished after their phenotypic conversion into new hair cells. Supporting cell divisions appear to be well coordinated because total supporting cell numbers throughout the regenerative process were invariant, despite the initial large-scale loss of hair cells. We conclude that a single ototoxic drug application provides an experimental framework to study the precise onset and timing of utricle hair cell regeneration in vivo. Our findings indicate that initial triggers and signaling events occur already within a few hours after aminoglycoside exposure. Direct transdifferentiation and asymmetric division of supporting cells to generate new hair cells subsequently happen largely in parallel and persist for several days.