from #Audiology via ola Kala on Inoreader http://ift.tt/2IqaKmy
via IFTTT
OtoRhinoLaryngology by Sfakianakis G.Alexandros Sfakianakis G.Alexandros,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,tel : 00302841026182,00306932607174
WFS1 mutation screening in a large series of Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis.
PLoS One. 2018;13(3):e0193359
Authors: Kobayashi M, Miyagawa M, Nishio SY, Moteki H, Fujikawa T, Ohyama K, Sakaguchi H, Miyanohara I, Sugaya A, Naito Y, Morita SY, Kanda Y, Takahashi M, Ishikawa K, Nagano Y, Tono T, Oshikawa C, Kihara C, Takahashi H, Noguchi Y, Usami SI
Abstract
A heterozygous mutation in the Wolfram syndrome type 1 gene (WFS1) causes autosomal dominant nonsyndromic hereditary hearing loss, DFNA6/14/38, or Wolfram-like syndrome. To date, more than 40 different mutations have been reported to be responsible for DFNA6/14/38. In the present study, WFS1 variants were screened in a large series of Japanese hearing loss (HL) patients to clarify the prevalence and clinical characteristics of DFNA6/14/38 and Wolfram-like syndrome. Massively parallel DNA sequencing of 68 target genes was performed in 2,549 unrelated Japanese HL patients to identify genomic variations responsible for HL. The detailed clinical features in patients with WFS1 variants were collected from medical charts and analyzed. We successfully identified 13 WFS1 variants in 19 probands: eight of the 13 variants were previously reported mutations, including three mutations (p.A684V, p.K836N, and p.E864K) known to cause Wolfram-like syndrome, and five were novel mutations. Variants were detected in 15 probands (2.5%) in 602 families with presumably autosomal dominant or mitochondrial HL, and in four probands (0.7%) in 559 sporadic cases; however, no variants were detected in the other 1,388 probands with autosomal recessive or unknown family history. Among the 30 individuals possessing variants, marked variations were observed in the onset of HL as well as in the presence of progressive HL and tinnitus. Vestibular symptoms, which had been rarely reported, were present in 7 out of 30 (23%) of the affected individuals. The most prevalent audiometric configuration was low-frequency type; however, some individuals had high-frequency HL. Haplotype analysis in three mutations (p.A716T, p.K836T, and p.E864K) suggested that the mutations occurred at these mutation hot spots. The present study provided new insights into the audiovestibular phenotypes in patients with WFS1 mutations.
PMID: 29529044 [PubMed - in process]
The sound of migration: exploring data sonification as a means of interpreting multivariate salmon movement datasets.
Heliyon. 2018 Feb;4(2):e00532
Authors: Hegg JC, Middleton J, Robertson BL, Kennedy BP
Abstract
The migration of Pacific salmon is an important part of functioning freshwater ecosystems, but as populations have decreased and ecological conditions have changed, so have migration patterns. Understanding how the environment, and human impacts, change salmon migration behavior requires observing migration at small temporal and spatial scales across large geographic areas. Studying these detailed fish movements is particularly important for one threatened population of Chinook salmon in the Snake River of Idaho whose juvenile behavior may be rapidly evolving in response to dams and anthropogenic impacts. However, exploring movement data sets of large numbers of salmon can present challenges due to the difficulty of visualizing the multivariate, time-series datasets. Previous research indicates that sonification, representing data using sound, has the potential to enhance exploration of multivariate, time-series datasets. We developed sonifications of individual fish movements using a large dataset of salmon otolith microchemistry from Snake River Fall Chinook salmon. Otoliths, a balance and hearing organ in fish, provide a detailed chemical record of fish movements recorded in the tree-like rings they deposit each day the fish is alive. This data represents a scalable, multivariate dataset of salmon movement ideal for sonification. We tested independent listener responses to validate the effectiveness of the sonification tool and mapping methods. The sonifications were presented in a survey to untrained listeners to identify salmon movements with increasingly more fish, with and without visualizations. Our results showed that untrained listeners were most sensitive to transitions mapped to pitch and timbre. Accuracy results were non-intuitive; in aggregate, respondents clearly identified important transitions, but individual accuracy was low. This aggregate effect has potential implications for the use of sonification in the context of crowd-sourced data exploration. The addition of more fish, and visuals, to the sonification increased response time in identifying transitions.
PMID: 29527578 [PubMed]
The sound of migration: exploring data sonification as a means of interpreting multivariate salmon movement datasets.
Heliyon. 2018 Feb;4(2):e00532
Authors: Hegg JC, Middleton J, Robertson BL, Kennedy BP
Abstract
The migration of Pacific salmon is an important part of functioning freshwater ecosystems, but as populations have decreased and ecological conditions have changed, so have migration patterns. Understanding how the environment, and human impacts, change salmon migration behavior requires observing migration at small temporal and spatial scales across large geographic areas. Studying these detailed fish movements is particularly important for one threatened population of Chinook salmon in the Snake River of Idaho whose juvenile behavior may be rapidly evolving in response to dams and anthropogenic impacts. However, exploring movement data sets of large numbers of salmon can present challenges due to the difficulty of visualizing the multivariate, time-series datasets. Previous research indicates that sonification, representing data using sound, has the potential to enhance exploration of multivariate, time-series datasets. We developed sonifications of individual fish movements using a large dataset of salmon otolith microchemistry from Snake River Fall Chinook salmon. Otoliths, a balance and hearing organ in fish, provide a detailed chemical record of fish movements recorded in the tree-like rings they deposit each day the fish is alive. This data represents a scalable, multivariate dataset of salmon movement ideal for sonification. We tested independent listener responses to validate the effectiveness of the sonification tool and mapping methods. The sonifications were presented in a survey to untrained listeners to identify salmon movements with increasingly more fish, with and without visualizations. Our results showed that untrained listeners were most sensitive to transitions mapped to pitch and timbre. Accuracy results were non-intuitive; in aggregate, respondents clearly identified important transitions, but individual accuracy was low. This aggregate effect has potential implications for the use of sonification in the context of crowd-sourced data exploration. The addition of more fish, and visuals, to the sonification increased response time in identifying transitions.
PMID: 29527578 [PubMed]