Objectives: The objectives of this study were to demonstrate the safety of auditory brainstem implant (ABI) surgery and document the subsequent development of auditory and spoken language skills in children without neurofibromatosis type II (NFII). Design: A prospective, single-subject observational study of ABI in children without NFII was undertaken at the University of North Carolina at Chapel Hill. Five children were enrolled under an investigational device exemption sponsored by the investigators. Over 3 years, patient demographics, medical/surgical findings, complications, device mapping, electrophysiologic measures, audiologic outcomes, and speech and language measures were collected. Results: Five children without NFII have received ABIs to date without permanent medical sequelae, although 2 children required treatment after surgery for temporary complications. All children wear their device daily, and the benefits of sound awareness have developed slowly. Intra-and postoperative electrophysiologic measures augmented surgical placement and device programming. The slow development of audition skills precipitated limited changes in speech production but had little impact on growth in spoken language. Conclusions: ABI surgery is safe in young children without NFII. Benefits from device use develop slowly and include sound awareness and the use of pattern and timing aspects of sound. These skills may augment progress in speech production but progress in language development is dependent upon visual communication. Further monitoring of this cohort is needed to better delineate the benefits of this intervention in this patient population. Copyright (C) 2017 Wolters Kluwer Health, Inc. All rights reserved.
from #Audiology via xlomafota13 on Inoreader http://ift.tt/2xCn7pa
via IFTTT
OtoRhinoLaryngology by Sfakianakis G.Alexandros Sfakianakis G.Alexandros,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,tel : 00302841026182,00306932607174
Πέμπτη 12 Οκτωβρίου 2017
Pediatric Auditory Brainstem Implantation: Surgical, Electrophysiologic, and Behavioral Outcomes.
Pediatric Auditory Brainstem Implantation: Surgical, Electrophysiologic, and Behavioral Outcomes.
Objectives: The objectives of this study were to demonstrate the safety of auditory brainstem implant (ABI) surgery and document the subsequent development of auditory and spoken language skills in children without neurofibromatosis type II (NFII). Design: A prospective, single-subject observational study of ABI in children without NFII was undertaken at the University of North Carolina at Chapel Hill. Five children were enrolled under an investigational device exemption sponsored by the investigators. Over 3 years, patient demographics, medical/surgical findings, complications, device mapping, electrophysiologic measures, audiologic outcomes, and speech and language measures were collected. Results: Five children without NFII have received ABIs to date without permanent medical sequelae, although 2 children required treatment after surgery for temporary complications. All children wear their device daily, and the benefits of sound awareness have developed slowly. Intra-and postoperative electrophysiologic measures augmented surgical placement and device programming. The slow development of audition skills precipitated limited changes in speech production but had little impact on growth in spoken language. Conclusions: ABI surgery is safe in young children without NFII. Benefits from device use develop slowly and include sound awareness and the use of pattern and timing aspects of sound. These skills may augment progress in speech production but progress in language development is dependent upon visual communication. Further monitoring of this cohort is needed to better delineate the benefits of this intervention in this patient population. Copyright (C) 2017 Wolters Kluwer Health, Inc. All rights reserved.
from #Audiology via ola Kala on Inoreader http://ift.tt/2xCn7pa
via IFTTT
from #Audiology via ola Kala on Inoreader http://ift.tt/2xCn7pa
via IFTTT
Pediatric Auditory Brainstem Implantation: Surgical, Electrophysiologic, and Behavioral Outcomes.
Objectives: The objectives of this study were to demonstrate the safety of auditory brainstem implant (ABI) surgery and document the subsequent development of auditory and spoken language skills in children without neurofibromatosis type II (NFII). Design: A prospective, single-subject observational study of ABI in children without NFII was undertaken at the University of North Carolina at Chapel Hill. Five children were enrolled under an investigational device exemption sponsored by the investigators. Over 3 years, patient demographics, medical/surgical findings, complications, device mapping, electrophysiologic measures, audiologic outcomes, and speech and language measures were collected. Results: Five children without NFII have received ABIs to date without permanent medical sequelae, although 2 children required treatment after surgery for temporary complications. All children wear their device daily, and the benefits of sound awareness have developed slowly. Intra-and postoperative electrophysiologic measures augmented surgical placement and device programming. The slow development of audition skills precipitated limited changes in speech production but had little impact on growth in spoken language. Conclusions: ABI surgery is safe in young children without NFII. Benefits from device use develop slowly and include sound awareness and the use of pattern and timing aspects of sound. These skills may augment progress in speech production but progress in language development is dependent upon visual communication. Further monitoring of this cohort is needed to better delineate the benefits of this intervention in this patient population. Copyright (C) 2017 Wolters Kluwer Health, Inc. All rights reserved.
from #Audiology via ola Kala on Inoreader http://ift.tt/2xCn7pa
via IFTTT
from #Audiology via ola Kala on Inoreader http://ift.tt/2xCn7pa
via IFTTT
Auditory sequential accumulation of spectral information
Publication date: Available online 11 October 2017
Source:Hearing Research
Author(s): Yi Shen
In many listening situations, information about the spectral content of a target sound may be distributed over time, and estimating the target spectrum requires efficient sequential processing. Listeners' ability to estimate the spectrum of a random-frequency, six-tone complex was investigated and the spectral content of the complex was revealed using a sequence of bursts. Whether each of the six tones was presented within each burst was determined at random according to a presentation probability. In separate conditions, the presentation probabilities (p) ranged from 0.2 to 1, the total number of bursts varied from 1 to 16, and the inter-burst interval was either 0 or 200 ms. To evaluate the information acquired by the listener, the burst sequence was followed, after a 500-ms silent interval, by the six-tone complex acting as an informational masker and the listener was required to detect a pure-tone target presented simultaneously with the masker. Greater performance in this task indicates more accurate estimation of the spectrum of the complex by the listener. Evidence for integration of information across bursts was observed, and the integration process did not significantly depend on inter-burst interval.
from #Audiology via ola Kala on Inoreader http://ift.tt/2gylh2R
via IFTTT
Source:Hearing Research
Author(s): Yi Shen
In many listening situations, information about the spectral content of a target sound may be distributed over time, and estimating the target spectrum requires efficient sequential processing. Listeners' ability to estimate the spectrum of a random-frequency, six-tone complex was investigated and the spectral content of the complex was revealed using a sequence of bursts. Whether each of the six tones was presented within each burst was determined at random according to a presentation probability. In separate conditions, the presentation probabilities (p) ranged from 0.2 to 1, the total number of bursts varied from 1 to 16, and the inter-burst interval was either 0 or 200 ms. To evaluate the information acquired by the listener, the burst sequence was followed, after a 500-ms silent interval, by the six-tone complex acting as an informational masker and the listener was required to detect a pure-tone target presented simultaneously with the masker. Greater performance in this task indicates more accurate estimation of the spectrum of the complex by the listener. Evidence for integration of information across bursts was observed, and the integration process did not significantly depend on inter-burst interval.
from #Audiology via ola Kala on Inoreader http://ift.tt/2gylh2R
via IFTTT
Εγγραφή σε:
Αναρτήσεις (Atom)