Τετάρτη 8 Ιουνίου 2022

Influence of bone morphology on the mechanobiological stimuli distribution of maxillary anterior labial bone: A biomechanical study

alexandrossfakianakis shared this article with you from Inoreader

Abstract

Objective

This study intended to ascertain the dimensional effects of labial bone thickness and height on the mechanobiological stimuli distribution of maxillary anterior labial bone through biomechanical analysis.

Material and methods

Twelve 3D finite element models of an anterior maxillary region with an implant were computer-simulated, including four levels of labial bone thicknesses (2, 1.5, 1.0, and 0.5 mm) and three levels of labial bone heights (normal, reduced by 1/3, reduced by 1/2). A 45° buccolingual oblique load of 100 N was applied to the implant restoration.

Results

Equivalent stress and principal strain mainly concentrated on crestal bone around the implant neck. The maximum equivalent stress in bone decreased as labial bone mass decreased, while the maximum principal strain and the displacement of dental implant increased as labial bone mass decreased. No significant difference of these three indicators was observed, when the labial bone thickness changed in the range of 2.0–1.0 mm with sufficient labial bone height.

Conclusions

In terms of biomechanics, the thickness of labial bone plate was recommended ≥1 mm. Sufficient labial bone height was warranted to prevent the stability of the implants from being seriously affected. The labial bone heights were more effective than thicknesses on the mechanobiological stimuli response of the dental implant-bone system.

Clinical significance

For this 3D finite element study, the biomechanical responses under different bone mass conditions were explored, in order to predict the process of bone remodeling and provide valid clinical recommendations for the decision-making process regarding the choices of tissue augmentation for some specific esthetic implantation cases for future clinical applications.

View on Web

Investigational PET tracers in neuro-oncology—What’s on the horizon? A report of the PET/RANO group

alexandrossfakianakis shared this article with you from Inoreader
Abstract
Many studies in patients with brain tumors evaluating innovative PET tracers have been published in recent years, and the initial results are promising. Here, the Response Assessment in Neuro-Oncology (RANO) PET working group provides an overview of the literature on novel investigational PET tracers for brain tumor patients. Furthermore, newer indications of more established PET tracers for the evaluation of glucose metabolism, amino acid transport, hypoxia, cell proliferation, and others are also discussed. Based on the preliminary findings, these novel investigational PET tracers should be further evaluated considering their promising potential. In particular, novel PET probes for imaging of translocator protein and somatostatin receptor overexpression as well as for immune system reactions appear to be of additional clinical value for tumor delineation and therapy monitoring. Progress in developing these radiotracers may contribute to improvi ng brain tumor diagnostics and advancing clinical translational research.
View on Web