Παρασκευή 8 Φεβρουαρίου 2019

The effect of blood flow occlusion during acute low-intensity isometric elbow flexion exercise

Abstract

Purpose

Blood flow restriction (BFR) with low-intensity (< 30% of 1 repetition maximum strength) muscle contraction has been used chronically (> 4 weeks) to enhance resistance training. However, mechanisms underlying muscle adaptations following BFR are not well understood. To explore changes related to chronic BFR adaptations, the current study used blood flow occlusion (BFO) during an acute bout of low-intensity isometric fatiguing contractions to assess peripheral (muscle) factors affected.

Methods

Ten males completed separate fatiguing elbow flexor protocols to failure; one with BFO and one with un-restricted blood flow (FF). Baseline, post-task failure, and 30 min of recovery measures of voluntary and involuntary contractile properties were compared.

Results

BFO had greater impairment of intrinsic measures compared with FF, despite FF lasting 80% longer. Following task failure, maximal voluntary contraction and 50 Hz torque decreased in both protocols (~ 60% from baseline). Voluntary activation decreased ~ 11% from baseline at failure following both protocols, but recovered at a faster rate following BFO, whereas MVC recovered to ~ 90% of baseline in both protocols. The 10/50 Hz torque ratio was decreased by ~ 68% and ~ 21% from baseline, for BFO and FF, respectively (P < 0.01). 50 Hz half-relaxation-time (HRT) was significantly longer immediately following BFO (~ 107% greater than baseline), with no change following FF.

Conclusions

Thus, greater peripheral fatigue that recovers at a similar rate compared to conventional exercise is likely driving muscle adaptations observed with chronic BFR exercise. Likely BFO alters energy demand and supply of working muscle similar to chronic BFR, but is exaggerated in this paradigm.



http://bit.ly/2TF3Gb0

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου