Τετάρτη 19 Οκτωβρίου 2016

Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates

S03785955.gif

Publication date: Available online 19 October 2016
Source:Hearing Research
Author(s): Francesca Rocchi, Margit E. Dylla, Peter A. Bohlen, Ramnarayan Ramachandran
Detection thresholds for auditory stimuli (signals) increase in the presence of maskers. Natural environments contain maskers/distractors that can have a wide range of spatiotemporal properties relative to the signal. While these parameters have been well explored psychophysically in humans, they have not been well explored in animal models, and their neuronal underpinnings are not well understood. As a precursor to the neuronal measurements, we report the effects of systematically varying the spatial and temporal relationship between signals and noise in macaque monkeys (Macaca mulatta and Macaca radiata). Macaques detected tones masked by noise in a Go/No-Go task in which the spatiotemporal relationships between the tone and noise were systematically varied. Masked thresholds were higher when the masker was continuous or gated on and off simultaneously with the signal, and lower when the continuous masker was turned off during the signal. A burst of noise caused higher masked thresholds if it completely temporally overlapped with the signal, whereas partial overlap resulted in lower thresholds. Noise durations needed to be at least 100 ms before significant masking could be observed. Thresholds for short duration tones were significantly higher when the onsets of signal and masker coincided compared to when the signal was presented during the steady state portion of the noise (overshoot). When signal and masker were separated in space, masked signal detection thresholds decreased relative to when the masker and signal were co-located (spatial release from masking). Masking release was larger for azimuthal separations than for elevation separations. These results in macaques are similar to those observed in humans, suggesting that the specific spatiotemporal relationship between signal and masker determine threshold in natural environments for macaques in a manner similar to humans. These results form the basis for future investigations of neuronal correlates and mechanisms of masking.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/2eTJGRi
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου