Publication date: October 2016
Source:Gait & Posture, Volume 50
Author(s): Oishee Mazumder, Ananda Sankar Kundu, Prasanna Kumar Lenka, Subhasis Bhaumik
Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a ‘dendogram-based support vector machine’ (DSVM) which can be used to control a lower-limb exoskeleton.A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities.The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%.
from #Audiology via ola Kala on Inoreader http://ift.tt/2bLXsTz
via IFTTT
OtoRhinoLaryngology by Sfakianakis G.Alexandros Sfakianakis G.Alexandros,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,tel : 00302841026182,00306932607174
Δευτέρα 29 Αυγούστου 2016
Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton
Ετικέτες
#Medicine by Alexandros G.Sfakianakis,
Anapafseos 5 Agios Nikolaos,
Crete 72100,
Greece,
tel :00302841026182 & 00306932607174
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου