Τρίτη 23 Φεβρουαρίου 2016

Three-dimensional parabolic equation modeling of mesoscale eddy deflection

cm_sbs_024_plain.png

The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.



from #Audiology via xlomafota13 on Inoreader http://ift.tt/1PVIGFX
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου