Abstract
Protein phosphatase 2A (PP2A) is one main serine/threonine phosphatase in eukaryotes, and its activation changes have been linked to modulation of numerous pathological processes, such as cancer, inflammation, fibrosis, and neurodegenerative diseases. Acute respiratory distress syndrome (ARDS), the major cause of respiratory failure, remains with limited therapies available up to now. Alveolar macrophages (AMs) are essential to innate immunity and host defense, participating in the pathogenesis of ARDS. As a result, AMs are considered as a potential therapeutic target for ARDS. In our study, we firstly found that PP2A activity was significantly decreased in the lipopolysaccharide (LPS)-stimulated AMs. Furthermore, adoptive transfer of AMs with enhanced PP2A enzyme activity that was improved by C2-ceramide prior to LPS exposure alleviated acute lung inflammation. Conversely, AM-specific ablation of PP2ACα exacerbated inflammatory responses to LPS. Mechanistically, PP2ACα negatively regulates LPS-induced cytokine secretion of AMs by NF-κB and MAPK pathways. Together, these findings provide the evidence to guide the development of novel therapeutic options targeting PP2ACα for ARDS/acute lung injury.
http://bit.ly/2RNa1o0
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου