Πέμπτη 24 Ιανουαρίου 2019

Blocking C/EBP β protects vascular endothelial cells from injury induced by intermittent hypoxia

Abstract

Background

Intermittent hypoxia (IH) can damage endothelial cells and lead to apoptosis in obstructive sleep apnea-hypopnea syndrome (OSAHS). Hypoxia induces apoptosis in endothelial cells via upregulation of endothelin-1 (ET-1) and hypoxia inducible factor-1 alpha (HIF-1α) plays a key role in the hypoxic stress response.

Purpose

We investigated an approach to diminish the negative effect of HIF-1α while maintaining its protective effect.

Methods

Human umbilical vein endothelial cells (HUVECs) were subjected to sustained hypoxia (SH) or IH for 24 h, and the responses of HIF-1α, CCAAT/enhancer binding protein beta (C/EBP β), and endothelin-1 (ET-1) were assessed by western blotting. A luciferase reporter system was employed to verify the potential binding site (transcription factor binding site, TFBS) for C/EBP β in the ET-1 promoter. The specificity of regulation of ET-1 by HIF-1α via C/EBP β was evaluated by a lentiviral system. The effects of silencing of C/EBP β on IH-induced apoptosis, vascular endothelial growth factor (VEGF) protein levels, proliferation, and in vitro tube formation were studied.

Results

We found that IH significantly increased HIF-1α, C/EBP β, and ET-1 in HUVECs. Knockdown of HIF-1α or C/EBP β inhibited the upregulation of ET-1 induced by IH. Blocking C/EBP β impaired IH-induced apoptosis but did not affect VEGF expression, proliferation, or in vitro tube formation. C/EBP β was shown to mediate increased ET-1 transcription by HIF-1α through the TFBS, 5′-GTTGCCTGTTG-3′, in ET-1 promoter.

Conclusion

Silencing of C/EBP β can suppress apoptosis but does not affect the protective role of HIF-1α in the hypoxic stress response.



http://bit.ly/2RQFupt

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου