Abstract
Background
Complications of ventral hernia repair (VHR) may be investigated by computed tomography or ultrasound (US) but neither modality gives a quantifiable metric of repair quality short of identifying hernia recurrence. Platelet-rich plasma (PRP), a growth factor-rich autologous blood product, has been shown to improve incorporation of native tissue with bioprosthetics. In this study, we investigate the effect of PRP on the incorporation and mechanical integrity of a non-crosslinked porcine acellular dermal matrix (pADM) in a rodent model of VHR and the correlative ability of ultrasound shear wave elastography (US-SWE) to assess repair quality.
Methods
PRP was isolated from whole blood of Lewis rats. Twenty-eight Lewis rats underwent chronic VHR using either pADM alone or augmented with autologous PRP prior to non-invasive imaging assessment and specimen harvest at either 3 or 6 months. US-SWE was performed to estimate the Young's modulus prior to histological assessment and data from PRP-treated rodents were compared to controls.
Results
Implanted pADM was easily distinguishable by US-SWE imaging in all cases analyzed in this study. The mean Young's modulus measured was 1.78 times and 2.54 times higher in PRP-treated samples versus control at 3-month and 6-month time points respectively (p < 0.05). At 3 months, qualitative and quantitative histology revealed decreased inflammation and improved incorporation in PRP-treated samples along the implant/abdominal wall interface. At 6 months, the PRP cohort had no hernia recurrence and preserved ADM integrity from immunologic degradation, while all control animals suffered hernia recurrence (4/6) or extreme ADM thinning (2/6).
Conclusion
This study confirms both the efficacy of PRP in augmenting VHR using pADM, as well as the reliability of US-SWE to non-invasively predict the quality of VHR. Although further human studies are necessary, this work supports PRP use to improve VHR outcomes and US-SWE potential for bedside non-invasive hernia characterization.
https://ift.tt/2EkROX2
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου