Abstract
Hydrogen has been considered one of the best energy carriers to satisfy the increasing demand for clean and renewable energy supply. In this paper, a series of copper-based (CuCo, CuNi, and CuFe) nanoparticles supported on reduced graphene oxide (rGO) were synthesized via a facile one-pot chemical reduction route, and their catalytic performance on hydrogen evolution from ammonia borane (NH3BH3, AB) hydrolysis at room temperature was studied. The results revealed that the Cu0.2Co0.8 nanoparticles (~ 2.1 nm) on rGO exhibited the highest activity, and Co nanoparticles (~ 3.9 nm) on rGO also displayed the excellent performance. Among all the as-prepared Cu0.2Co0.8/rGO catalysts, Cu0.2Co0.8/rGO with 48 wt% nanoparticles exhibits the highest activity with the initial hydrogen production rate values as high as 50.6 mol H2 molmetal−1 min−1, superior to the majority of Cu-based non-noble metal catalysts. The excellent performance could be attributed to the well dispersion of CuCo nanoparticles on reduced graphene oxide.
https://ift.tt/2QKLVsT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου