Abstract
Dental caries is a chronic, infectious, and destructive disease that allows bacteria to break into the dental pulp tissue. As caries-related bacteria invade the human dentinal tubules, odontoblasts are the first line of dental pulp that trigger the initial inflammatory and immune responses. DNA methylation is a key epigenetic modification that plays a fundamental role in gene transcription, and its role in inflammation-related diseases has recently attracted attention. However, whether DNA methylation regulates the inflammatory response of human odontoblasts is still unknown. In the present study, we investigated the expression of DNA methyltransferase (DNMT)-1 in lipoteichoic acid (LTA)-stimulated human odontoblast-like cells (hOBs) and found that DNMT1 expression showed a decline that is contrary to the transcription of inflammatory cytokines. Knockdown of the DNMT1 gene increased the expression of several cytokines, including IL-6 and IL-8, in the LTA-induced inflammatory response. DNMT1 knockdown increased the phosphorylation of IKKα/β, IκBα, and p65 in the NF-κB pathway and the phosphorylation of p38 and ERK in the MAPK pathway; however, only the NF-κB pathway inhibitor PDTC suppressed both IL-6 and IL-8 expression, whereas inhibitors of the MAPK pathway (U0126, SB2035580, and SP600125) did not. Furthermore, DNMT1 knockdown upregulated the expression of MyD88 and TRAF6 but only attenuated the MyD88 gene promoter methylation in LTA-treated hOBs. Taken together, these results demonstrated that DNMT1 depletion caused hypomethylation and upregulation of MyD88, which resulted in activation of the NF-κB pathway and the subsequent release of LTA-induced inflammatory cytokines in hOBs. This study emphasizes the critical role of DNA methylation in the immune defense of odontoblasts when dental pulp reacted to caries.
http://bit.ly/2BddWAm
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου