Abstract
Remote detection by surface plasmon resonance (SPR) is demonstrated through microstructured optical arrays of conical nanotips or micropillars. Both geometries were fabricated by controlled wet chemical etching of bundles comprising several thousands of individual optical fibers. Their surface was coated by a thin gold layer in order to confer SPR properties. The sensitivity and resolution of both shapes were evaluated as a function of global optical index changes in remote detection mode performed by imaging through the etched optical fiber bundle itself. With optimized geometry of micropillar arrays, resolution was increased up to 10−4 refractive index units. The gold-coated micropillar arrays were functionalized with DNA and were able to monitor remotely the kinetics of DNA hybridization with complementary strands. We demonstrate for the first time highly parallel remote SPR detection of DNA via microstructured optical arrays. The obtained SPR sensitivity combined with the remote intrinsic properties of the optical fiber bundles should find promising applications in biosensing, remote SPR imaging, a lab-on-fiber platform dedicated to biomolecular analysis, and in vivo endoscopic diagnosis.
Graphical abstract
https://ift.tt/2txgm8F
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου