Τετάρτη 9 Ιανουαρίου 2019

Monocular channels have a functional role in phasic alertness and temporal expectancy

Abstract

The literature has long emphasized the neocortex's role in the tangled phasic-alertness and temporal-expectancy processes. In this work, we examined whether subcortical, monocular mechanisms have a functional role in these processes. This was done by assessing phasic alertness and temporal expectancy independently using a cue–target eye-of-origin manipulation. Participants performed target detection tasks in which a central cue and its ensuing peripheral target were each presented either to the same eye or to a different eye. In Experiment 1, phasic alertness, independent of temporal expectancy, was manipulated by presenting an alerting cue prior to the target presentation. The alerting effect elicited by the cue lasted for a longer duration when the cue and target were presented to the same eye than when they were presented to different eyes, indicating the involvement of subcortical regions in phasic alertness. In Experiment 2, the cue's temporal predictability regarding the target's onset time was manipulated by changing the cue–target interval's foreperiod distribution. A modulation in temporal expectancy was found when both the cue and the target were presented to the same eye, demonstrating the importance of subcortical mechanisms in temporal expectancy. Together, the results demonstrate that monocular channels are functionally involved in both phasic alertness and temporal expectancy. This study suggests that both phasic alertness and temporal expectancy are functionally dependent on monocular channels of the visual stream, and highlights the importance of direct examination of primitive, subcortical regions in higher cognitive functioning (e.g., temporal expectancy).



http://bit.ly/2RArY8s

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου