Abstract
The immobilized algae Sargassum vulgare was used as biosorbent for Fe3+ removal through a batch and continuous system in order to study the biosorption capacity and to establish a new method of the valorization of this waste. The kinetic data could be described by the pseudo first-order and pseudo second-order kinetic models. The batch equilibrium was fitted by the Langmuir model with a value of correlation coefficient (R2 = 0.98) higher than that of the Freundlich (R2 = 0.89). The process was exothermic and spontaneous and the biomass was successfully desorbed using 0.1 M HCl. Furthermore, the Thomas model, Bohart-Adams model, and Yoon-Nelson model were successfully applied to evaluate the dynamic behavior of Fe3+ biosorption in a fixed-bed column. The lower flow rate of 1.04 ml/min showed the greater performance of the process. Fourier transform infrared spectroscopy revealed the presence of several active binding sites, and scanning electron microscopy micrograph confirmed the metal adsorption on the surface. The results reveal that the immobilized algae have a potential removal for Fe3+ in a batch and continuous system.
http://bit.ly/2FgkKkg
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου