Abstract
Plant virus-based vectors provide attractive and valuable tools for rapid production of recombinant protein in large quantities as they produce systemic infections in differentiated plant tissues. In the present study, we engineered the Soybean yellow mottle mosaic virus (SYMMV) as a gene expression vector which is a promising candidate for systemic expression of foreign proteins in French bean plants. Full virus vector strategy was exploited for insertion of foreign gene by inserting MCS through PCR in the circular pJET-SYMMV clone. To examine the ability of the SYMMV vector system, GFP gene was cloned after the start codon of coat protein (CP) so that its expression was driven by the SYMMV-CP subgenomic promoter. When in vitro run off SYMMV-GFP transcript was mechanically inoculated to French bean leaves, good level of GFP expression was observed through confocal microscopy up to 40 dpi. Expression of heterologous protein was also confirmed through ISEM, DAC-ELISA and RT-PCR with specific primers at 20 dpi. The recombinant SYMMV construct was stable in in vitro runoff transcript inoculated plants but the inserted GFP was lost in progeny virion inoculated plants. The system developed here will be useful for further studies of SYMMV gene functions and exploitation of SYMMV as a gene expression vector.
http://bit.ly/2QgtiZs
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου