Δευτέρα 17 Δεκεμβρίου 2018

Transient receptor potential ankyrin 1 (trpa1) mediates il-1β-induced apoptosis in rat chondrocytes via calcium overload and mitochondrial dysfunction

Abstract

Background

Chondrocyte apoptosis is a central feature in the progression of osteoarthritis (OA), and would be triggered by sustained elevation of intracellular calcium ion (Ca2+), also known as a cellular second messenger. Transient receptor potential ankyrin 1 (TRPA1) is a membrane-associated cation channel, and the activation of which causes an influx of cation ions, in particularly Ca2+, into the activated cells. Therefore, we investigate the potential role of TRPA1 in mediating Ca2+ influx to promote chondrocyte apoptosis in OA.

Methods

The expression of TRPA1 in interleukin (IL)-1β-treated rat chondrocytes was assessed by Polymerase chain reaction (PCR) and Western blot (WB), and the functionality of TRPA1 channel by Ca2+ influx measurements. Meanwhile, the chondrocyte apoptosis in IL-1β-treated cells was measured by TUNEL assay and flow cytometry. The measurement of mitochondrial membrane potential and apoptosis-associated proteins after inhibition of TRPA1 were also performed in IL-1β-treated rat chondrocytes.

Results

After being induced by IL-1β, the gene and protein expression of TRPA1 was increased in the dose-dependent manner. Meanwhile, Ca2+ influx mediated by TRPA1 in rat chondrocytes was also enhanced. Pharmacological inhibition of TRPA1 downregulated the apoptotic rate in IL-1β-treated rat chondrocytes. In addition, the membrane potential depolarization was improved and significantly increased expression of apoptosis-associated proteins also reduced by the TRPA1 antagonist.

Conclusions

We found the IL-1β caused the increased functional expression of TRPA1, the activation of which involved IL-1β-induced apoptosis in rat chondrocytes. The potential mechanism may be linked to the intracellular calcium overload mediated by TRPA1 and attendant mitochondrial dysfunction.



https://ift.tt/2QAhNRr

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου