Publication date: Available online 18 October 2018
Source: Hearing Research
Author(s): Douglas H. Keefe, M. Patrick Feeney, Lisa L. Hunter, Denis F. Fitzpatrick, Chelsea M. Blankenship, Angela C. Garinis, Daniel B. Putterman, Marcin Wróblewski
Abstract
Transient-evoked otoacoustic emissions (TEOAEs) at high frequencies are a non-invasive physiological test of basilar membrane mechanics at the basal end, and have clinical potential to detect risk of hearing loss related to outer-hair-cell dysfunction. Using stimuli with constant incident pressure across frequency, TEOAEs were measured in experiment 1 at low frequencies (0.7-8 kHz) and high frequencies (7.1-14.7 kHz) in adults with normal hearing up to 8 kHz and varying hearing levels from 9 to 16 kHz. In combination with click stimuli, chirp stimuli were used with slow, medium and fast sweep rates for which the local frequency increased or decreased with time. Chirp TEOAEs were transformed into equivalent click TEOAEs by inverse filtering out chirp stimulus phase, and analyzed similarly to click TEOAEs. To improve detection above 8 kHz, TEOAEs were measured in experiment 2 with higher-level stimuli and longer averaging times. These changes increased the TEOAE signal-to-noise ratio (SNR) by 10 dB. Slower sweep rates were investigated but the elicited TEOAEs were detected in fewer ears compared to faster rates. Data were acquired in adults and children (age 11-17 y.), including children with cystic fibrosis (CF) treated with ototoxic antibiotics. Test-retest measurements revealed satisfactory repeatability of high-frequency TEOAE SNR (median of 1.3 dB) and coherence synchrony measure, despite small test-retest differences related to changes in forward and reverse transmission in the ear canal. The results suggest the potential use of such tests to screen for sensorineural hearing loss, including ototoxic loss. Experiment 2 was a feasibility study to explore TEOAE test parameters that might be used in a full-scale study to screen CF patients for risk of ototoxic hearing loss.
from #Audiology via ola Kala on Inoreader https://ift.tt/2q2qGUi
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου