Publication date: Available online 6 April 2018
Source:Hearing Research
Author(s): Alessandro Altoè, Ville Pulkki, Sarah Verhulst
The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca2+ gated outward K+ currents. To quantify how the voltage-dependent activation of the K+ channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K+ conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K+ channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K+ channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse.
from #Audiology via ola Kala on Inoreader https://ift.tt/2GG9Llh
via IFTTT
OtoRhinoLaryngology by Sfakianakis G.Alexandros Sfakianakis G.Alexandros,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,tel : 00302841026182,00306932607174
Σάββατο 7 Απριλίου 2018
The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses
Ετικέτες
#Medicine by Alexandros G.Sfakianakis,
Anapafseos 5 Agios Nikolaos,
Crete 72100,
Greece,
tel :00302841026182 & 00306932607174
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου