Publication date: Available online 27 April 2017
Source:Hearing Research
Author(s): Kelly Radziwon, David Holfoth, Julia Lindner, Zoe Kaier-Green, Rachael Bowler, Maxwell Urban, Richard Salvi
The use of auditory reaction time is a reliable measure of loudness perception in both animals and humans with reaction times (RT) decreasing with increasing stimulus intensity. Since abnormal loudness perception is a common feature of hyperacusis, a potentially debilitating auditory disorder in which moderate-intensity sounds are perceived as uncomfortable or painfully loud, we used RT measures to assess rats for salicylate-induced hyperacusis. A previous study using an operant conditioning RT procedure found that high-dose sodium salicylate (SS) induced hyperacusis-like behavior, i.e., faster than normal RTs to moderate and high level sounds, when rats were tested with broadband noise stimuli. However, it was not clear from that study if salicylate induces hyperacusis-like behavior in a dose- or frequency-dependent manner. Therefore, the goals of the current study were to determine how RT-intensity functions were altered by different doses of salicylate, and, using tone bursts, to determine if salicylate induces hyperacusis-like behavior across the entire frequency spectrum or only at certain frequencies. Similar to previous physiological studies, we began to see faster than normal RTs for sounds 60 dB SPL and greater with salicylate doses of 150 mg/kg and higher; indicating the rats were experiencing hyperacusis at high salicylate doses. In addition, high-dose salicylate significantly reduced RTs across all stimulus frequencies tested which suggests that a central neural excitability mechanism may be a potential driver of salicylate-induced changes in loudness perception and hyperacusis.
from #Audiology via ola Kala on Inoreader http://ift.tt/2qj2ifl
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου