Related Articles |
Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.
Mol Ther. 2017 Jan 09;:
Authors: György B, Sage C, Indzhykulian AA, Scheffer DI, Brisson AR, Tan S, Wu X, Volak A, Mu D, Tamvakologos PI, Li Y, Fitzpatrick Z, Ericsson M, Breakefield XO, Corey DP, Maguire CA
Abstract
Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs(-/-)]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.
PMID: 28082074 [PubMed - as supplied by publisher]
from #Audiology via ola Kala on Inoreader http://ift.tt/2jaKn81
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου